Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Physiol Plant ; 176(2): e14260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511471

RESUMO

Bacosides are dammarane-type triterpenoidal saponins in Bacopa monnieri and have various pharmacological applications. All the bacosides are diversified from two isomers, i.e., jujubogenin and pseudojujubogenin. The biosynthetic pathway of bacoside is not well elucidated. In the present study, we characterized a UDP-glycosyltransferase, UGT79A18, involved in the glycosylation of pseudojujubogenin. UGT79A18 shows higher expression in response to 5 h of wounding, and 3 h of MeJA treatment. The recombinant UGT79A18 shows in vitro activity against a wide range of flavonoids and triterpenes and has a substrate preference for protopanaxadiol, a dammarane-type triterpene. Secondary metabolite analysis of overexpression and knockdown lines of UGT79A18 in B. monnieri identify bacopasaponin D, bacopaside II, bacopaside N2 and pseudojujubogenin glucosyl rhamnoside as the major bacosides that were differentially accumulated. In the overexpression lines of UGT79A18, we found 1.7-fold enhanced bacopaside II, 8-fold enhanced bacopasaponin D, 3-fold enhanced pseudojujubogenin glucosyl rhamnoside, and 1.6-fold enhanced bacopaside N2 content in comparison with vector control plant, whereas in the knockdown lines of UGT79A18, we found 1.4-fold reduction in bacopaside II content, 3-fold reduction in the bacopasaponin D content, 2-fold reduction in the pseudojujubogenin glucosyl rhamnoside content, and 1.5-fold reduction in bacopaside N2 content in comparison with vector control. These results suggest that UGT79A18 is a significant UDP glycosyltransferase involved in glycosylating pseudojujubogenin and enhancing the pseudojujubogenin-derived bacosides.


Assuntos
Acetatos , Bacopa , Ciclopentanos , Oxilipinas , Saponinas , Triterpenos , Bacopa/genética , Bacopa/química , Glicosiltransferases/genética , Vias Biossintéticas , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/uso terapêutico , 60630 , Difosfato de Uridina , Extratos Vegetais/química
2.
Mol Biol Rep ; 50(10): 7967-7979, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37535247

RESUMO

BACKGROUND: Millions of people around the globe are affected by Alzheimer's disease (AD). This crippling condition has no treatment despite intensive studies. Some phytocompounds have been shown to protect against Alzheimer's in recent studies. METHODS: Thus, this work aimed to examine Bacopa monnieri phytocompounds' synergistic effects on neurodegeneration, antioxidant activity, and cognition in the scopolamine-induced AD mice model. The toxicity study of two phytocompounds: quercetin and bacopaside X revealed an LD50 of more than 2000 mg/kg since no deaths occurred. RESULTS: The neuroprotection experiment consists of 6 groups i.e., control (saline), scopolamine (1 mg/kg), donepezil (5 mg/kg), Q (25 mg/kg), BX (20 mg/kg), and Q + BX (25 mg/kg + 20 mg/kg). Visual behavioral assessment using the Morris water maze showed that animals in the diseased model group (scopolamine) moved more slowly toward the platform and exhibited greater thigmotaxis behavior than the treatment and control groups. Likewise, the concentration of biochemical NO, GSH, and MDA improved in treatment groups concerning the diseased group. mRNA levels of different marker genes including ChAT, IL-1α, IL-1 ß, TNF α, tau, and ß secretase (BACE1) improved in treatment groups with respect to the disease group. CONCLUSION: Both bacopaside X and quercetin synergistically have shown promising results in neuroprotection. Therefore, it is suggested that Q and BX may work synergistically due to their antioxidant and neuroprotective property.


Assuntos
Doença de Alzheimer , Bacopa , Fármacos Neuroprotetores , Humanos , Camundongos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Escopolamina/farmacologia , Escopolamina/uso terapêutico , Bacopa/química , Secretases da Proteína Precursora do Amiloide , Quercetina/farmacologia , Quercetina/uso terapêutico , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ácido Aspártico Endopeptidases , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Aprendizagem em Labirinto
3.
Funct Plant Biol ; 50(6): 482-496, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37045602

RESUMO

Bacteria that enhance plant growth and development and are found in the vicinity of roots are referred to as plant growth-promoting rhizobacteria. Some beneficial bacteria help plant tolerance to many hazardous chemical elements. In this context, Cupriavidus basilensis , Novosphingobium humi , Bacillus zanthoxyli , Bacillus sp., Paenibacillus alvei , Ancylobacter aquaticus and Ralstonia syzygii metal-tolerant rhizospheric bacteria were isolated from rhizospheric soil associated with Bacopa monnieri . The beneficial effects of rhizospheric bacteria on B. monnieri plant physiology and biochemical responses were investigated under pot conditions at two levels (100µM and 500µM) of CuSO4 or FeCl3 . N. humi , A. aquaticus and R. syzygii bacterial strains were associated with significantly increased height and biomass under normal and stress conditions. An assay for indole acetic acid in isolated rhizospheric bacteria found differential secretion except Bacillus zanthoxyli . Bacoside A is a major phytocompound in B. monnieri with medicinal value; maximum induction was observed in the R. syzygii treatment. High concentration of copper and iron salts negatively influenced height, biomass and photosynthetic pigments; however N. humi , A. aquaticus , Bacilllus sp. and R. syzygii beneficial bacterial helped plants under stress conditions. Moreover, a significant enhancement in chlorophyll a and b was noticed in C. basilensis , B. zanthoxyli , Bacilllus sp., P. alvei and R. syzygii treatments, without much influence on carotenoid levels. Therefore, the present study emphasises the importance of isolating plant growth-promoting rhizobacteria for use in bacopa plants exposed to metals such as copper and iron in soil.


Assuntos
Bacopa , Gallionellaceae , Cobre/farmacologia , Ferro/farmacologia , Bacopa/química , Clorofila A/farmacologia , Bactérias , Solo
4.
Mol Neurobiol ; 60(1): 303-316, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36261695

RESUMO

Accumulation of Aß42 peptides forming plaque in various regions of the brain is a hallmark of Alzheimer's disease (AD) progression. However, to date, there is no effective management strategy reported for attenuation of Aß42-induced toxicity in the early stages of the disease. Alternate medicinal systems such as Ayurveda in the past few decades show promising results in the management of neuronal complications. Medhya Rasayana such as Brahmi is known for its neuroprotective properties via resolving memory-related issues, while the underlying molecular mechanism of the same remains unclear. In the present study, we aimed to understand the neuroprotective effects of the aqueous extract of Bacopa monnieri and Centella asiatica (both commonly known as Brahmi) against the Aß42 expressing model of the Drosophila melanogaster. By applying a quantitative proteomics approach, the study identified > 90% of differentially expressed proteins from Aß42 expressing D. melanogaster were either restored to their original expression pattern or showed no change in expression pattern upon receiving either Brahmi extract treatment. The Brahmi restored proteins were part of neuronal pathways associated with cell cycle re-entry, apoptosis, and mitochondrial dynamics. The neuroprotective effect of Brahmi was also validated by negative geotaxis behavioral analysis suggesting its protective role against behavioral deficits exerted by Aß42 toxicity. We believe that these discoveries will provide a platform for developing novel therapeutics for AD management by deciphering molecular targets of neuroprotection conferred by an aqueous extract of Bacopa monnieri or Centella asiatica.


Assuntos
Doença de Alzheimer , Bacopa , Fármacos Neuroprotetores , Animais , Drosophila melanogaster , Neuroproteção , Proteômica , Bacopa/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Peptídeos beta-Amiloides/toxicidade
5.
Curr Comput Aided Drug Des ; 19(1): 24-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36221888

RESUMO

AIM: With several experimental studies establishing the role of Bacopa monnieri as an effective neurological medication, less focus has been employed to explore how effectively Bacopa monnieri brings about this property. The current work focuses on understanding the molecular interaction of the phytochemicals of the plant against different neurotrophic factors to explore their role and potential as potent anti-neurodegenerative drugs. BACKGROUND: Neurotrophins play a crucial role in the development and regulation of neurons. Alterations in the functioning of these Neurotrophins lead to several Neurodegenerative Disorders. Albeit engineered medications are accessible for the treatment of Neurodegenerative Disorders, due to their numerous side effects, it becomes imperative to formulate and synthesize novel drug candidates. OBJECTIVE: This study aims to investigate the potential of Bacopa monnieri phytochemicals as potent antineurodegenerative drugs by inspecting the interactions between Neurotrophins and target proteins. METHODS: The current study employs molecular docking and molecular dynamic simulation studies to examine the molecular interactions of phytochemicals with respective Neurotrophins. Further inspection of the screened phytochemicals was performed to analyze the ADME-Tox properties in order to classify the screened phytochemicals as potent drug candidates. RESULTS: The phytochemicals of Bacopa monnieri were subjected to in-silico docking with the respective Neurotrophins. Vitamin E, Benzene propanoic acid, 3,5-bis (1,1- dimethylethyl)- 4hydroxy-, methyl ester (BPA), Stigmasterol, and Nonacosane showed an excellent binding affinity with their respective Neurotrophins (BDNF, NT3, NT4, NGF). Moreover, the molecular dynamic simulation studies revealed that BPA and Stigmasterol show a very stable interaction with NT3 and NT4, respectively, suggesting their potential role as a drug candidate. Nonacosane exhibited a fluctuating binding behavior with NGF which can be accounted for by its long linear structure. ADME-Tox studies further confirmed the potency of these phytochemicals as BPA violated no factors and Vitamin E, Stigmasterol and Nonacosane violated 1 factor for Lipinski's rule. Moreover, their high human intestinal absorption and bioavailability score along with their classification as non-mutagen in the Ames test makes these compounds more reliable as potent antineurodegenerative drugs. CONCLUSION: Our study provides an in-silico approach toward understanding the anti-neurodegenerative property of Bacopa monnieri phytochemicals and establishes the role of four major phytochemicals which can be utilized as a replacement for synthetic drugs against several neurodegenerative disorders.


Assuntos
Bacopa , Doenças Neurodegenerativas , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Bacopa/química , Bacopa/metabolismo , Simulação de Acoplamento Molecular , Estigmasterol/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Fatores de Crescimento Neural/metabolismo , Vitamina E , Desenvolvimento de Medicamentos
6.
Molecules ; 27(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36296643

RESUMO

Schizophrenia is a horrible mental disorder characterized by distorted perceptions of reality. Investigations have not identified a single etiology for schizophrenia, and there are multiple hypotheses based on various aspects of the disease. There is no specific treatment for schizophrenia. Hence, we have tried to investigate the updated information stored in the genetic databases related to genes that could be responsible for schizophrenia and other related neuronal disorders. After implementing combined computational methodology, such as protein-protein interaction analysis led by system biology approach, in silico docking analysis was performed to explore the 3D binding pattern of Bacopa monnieri natural compounds while interacting with STXBP1. The best-identified compound was CID:5319292 based on -10.3 kcal/mol binding energy. Further, selected complexes were dynamically evaluated by MDS methods, and the output reveals that the STXBP1-CID:5281800 complex showed the lowest RMSD value, i.e., between 0.3 and 0.4 nm. Hence, identified compounds could be used to develop and treat neuronal disorders after in vivo/in vitro testing.


Assuntos
Bacopa , Esquizofrenia , Humanos , Bacopa/química , Esquizofrenia/tratamento farmacológico , Neurônios , Extratos Vegetais/química
7.
Biomed Pharmacother ; 153: 113469, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076495

RESUMO

Bacopa monnieri (Brahmi) is a well-known perennial, creeping herb of the Indian Ayurveda system; it contains numerous bioactive phytoconstituents implicated in the therapeutic management of several life-threatening diseases. This herb was used by Ancient Vedic scholars due to its pharmacological effect, especially as a nerve tonic and nootropic booster. However, to better understand the roles of Bacopa monnieri extract (BME) in neurological disorders and memory-related diseases, it is necessary to understand its active phytochemical constituents and their molecular mechanisms. Several clinical studies suggested that BME have neuroprotective effects, making it worth revising a notable herb. Here we investigated the contours of BME's phytochemistry and pharmacological features, focusing on neuronal disorders. We further analyzed the underlying molecular mechanisms in therapeutic intervention. Various clinical concerns and synergistic potential of BME were explored for their effective use in cognition and neuroprotection. The generation of reactive oxygen species increases neuroinflammation and neurotoxicity and is associated with Tau and amyloid-beta (Aß) aggregation, leading to a neurological disorder. Our findings provide deeper mechanistic insights into the neuroprotective roles of BME, which can be further implicated in the therapeutic management of neurological disorders and exerting cognitive-enhancing effects.


Assuntos
Bacopa/química , Ayurveda , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Cognição/efeitos dos fármacos , Humanos , Transtornos da Memória/tratamento farmacológico , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo
8.
Molecules ; 27(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956923

RESUMO

Urinary tract infections (UTIs) are becoming more common, requiring extensive protection from antimicrobials. The global expansion of multi-drug resistance uropathogens in the past decade emphasizes the necessity of newer antibiotic treatments and prevention strategies for UTIs. Medicinal plants have wide therapeutic applications in both the prevention and management of many ailments. Bacopa monnieri is a medicinal plant that is found in the warmer and wetlands regions of the world. It has been used in Ayurvedic systems for centuries. The present study aimed to investigate the antibacterial potential of the extract of B. monnieri leaves and its bioactive molecules against UTIs that are caused by Klebsiella pneumoniae and Proteus mirabilis. This in vitro experimental study was conducted by an agar well diffusion method to evaluate the antimicrobial effect of 80% methanol, 96% ethanol, and aqueous extracts of B. monnieri leaves on uropathogens. Then, further screening of their phytochemicals was carried out using standard methods. To validate the bioactive molecules and the microbe interactions, AutoDock Vina software was used for molecular docking with the Klebsiella pneumoniae fosfomycin resistance protein (5WEW) and the Zn-dependent receptor-binding domain of Proteus mirabilis MR/P fimbrial adhesin MrpH (6Y4F). Toxicity prediction and drug likeness were predicted using ProTox-II and Molinspiration, respectively. A molecular dynamics (MD) simulation was carried out to study the protein ligand complexes. The methanolic leaves extract of B. monnieri revealed a 22.3 mm ± 0.6 mm to 25.0 mm ± 0.5 mm inhibition zone, while ethanolic extract seemed to produce 19.3 mm ± 0.8 mm to 23.0 mm ± 0.4 mm inhibition zones against K. pneumoniae with the use of increasing concentrations. In the case of P. mirabilis activity, the methanolic extracts showed a 21.0 mm ± 0.8 mm to 24.0 mm ± 0.6 mm zone of inhibition and the ethanol extract produced a 17.0 mm ± 0.9 mm to 23.0 mm ± 0.7 mm inhibition zone with increasing concentrations. Carbohydrates, flavonoids, saponin, phenolic, and terpenoid were common phytoconstituents identified in B. monnieri extracts. Oroxindin showed the best interactions with the binding energies with 5WEW and 6Y4F, -7.5 kcal/mol and -7.4 kcal/mol, respectively. Oroxindin, a bioactive molecule, followed Lipinski's rule of five and exhibited stability in the MD simulation. The overall results suggest that Oroxindin from B. monnieri can be a potent inhibitor for the effective killing of K. pneumoniae and P. mirabilis. Additionally, its safety has been established, indicating its potential for future drug discovery and development in the treatment for UTIs.


Assuntos
Bacopa , Infecções Urinárias , Antibacterianos/farmacologia , Bacopa/química , Etanol , Klebsiella pneumoniae , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteus mirabilis , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia
9.
Molecules ; 27(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36014442

RESUMO

The neurotoxins methamphetamine (METH) and 1-methyl-4-phenylpyridinium (MPP+) damage catecholamine neurons. Although sharing the same mechanism to enter within these neurons, METH neurotoxicity mostly depends on oxidative species, while MPP+ toxicity depends on the inhibition of mitochondrial activity. This explains why only a few compounds protect against both neurotoxins. Identifying a final common pathway that is shared by these neurotoxins is key to prompting novel remedies for spontaneous neurodegeneration. In the present study we assessed whether natural extracts from Bacopa monnieri (BM) may provide a dual protection against METH- and MPP+-induced cell damage as measured by light and electron microscopy. The protection induced by BM against catecholamine cell death and degeneration was dose-dependently related to the suppression of reactive oxygen species (ROS) formation and mitochondrial alterations. These were measured by light and electron microscopy with MitoTracker Red and Green as well as by the ultrastructural morphometry of specific mitochondrial structures. In fact, BM suppresses the damage of mitochondrial crests and matrix dilution and increases the amount of healthy and total mitochondria. The present data provide evidence for a natural compound, which protects catecholamine cells independently by the type of experimental toxicity. This may be useful to counteract spontaneous degenerations of catecholamine cells.


Assuntos
Bacopa , Metanfetamina , Fármacos Neuroprotetores , Síndromes Neurotóxicas , 1-Metil-4-fenilpiridínio/toxicidade , Bacopa/química , Catecolaminas , Metanfetamina/toxicidade , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Neurotoxinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo
10.
Curr Drug Targets ; 23(9): 889-901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35297345

RESUMO

Parkinson's disease is a chronic and gradually progressive neurodegenerative disorder triggered due to the loss of dopamine-releasing neurons in the region of substantia nigra pars compacta characterized by the motor symptoms, such as tremor, bradykinesia, akinesia, and postural instability. Proteinopathies, mitochondrial dysfunction induced dopaminergic neuronal deterioration, and gene mutations are the hallmarks of Parkinson's disease. The bioactive components of Brahmi, such as Bacoside A, Bacoside B, and Bacosaponins, belong to various chemical families. Brahmi's neuroprotective role includes reducing neuronal oxidative stress, dopaminergic neuronal degeneration, mitochondrial dysfunction, inflammation, inhibition of α-synuclein aggregation, and improvement of cognitive and learning behaviour. Researchers found that Bacopa monnieri significantly increased brain levels of glutathione, vitamin C, vitamin E, and vitamin A in rats exposed to cigarette smoke. Brahmi has a potent antioxidant property and neuroprotective effects against PD that help reduce oxidative stress and neuroinflammation and enhance dopamine levels. The review collates all the preclinical studies that prove the beneficial neuroprotective effect of Brahmi for treating PD.


Assuntos
Bacopa , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Bacopa/química , Dopamina , Neurônios Dopaminérgicos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Ratos
11.
J Ethnopharmacol ; 293: 115199, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35346813

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bacopa monnieri (BM) is commonly employed in the Indian traditional system of medicines, i.e. Ayurveda as a memory booster, antioxidant, anti-inflammatory, antipyretic, analgesic, sedative and anti-epileptic for decades. AIM OF THE STUDY: To evaluate the neuroprotective effect of Bacopa monnieri (BM) in experimental model of autism spectrum disorder (ASD) in Wistar rats and explore its mechanism of action. MATERIALS AND METHODS: BacoMind, was evaluated for its neuroprotective effect in valproic acid (VPA) model of ASD. For in-vivo study, the pregnant female Wistar rats were divided in two groups; normal control (NC) and VPA group who received single dose of normal saline (0.9%) or 600 mg/kg dose of VPA respectively on gestation day (G.D) 12.5. After the birth, all pups were segregated according to the sex. All the male pups from the dams were divided into six groups: Group 1 (NC, treated with only 0.9% normal saline, group 2 (VPA, treated 600 mg/kg on G.D12.5 and normal saline from post natal day (PND) 23 to 43), group 3 (risperidone 2.5 mg/kg, PND 23 to 43) and groups 4, 5 and 6 (BM 20, 40, 80 mg/kg, PND 23 to 43). All experimental groups were subjected to batteries of behavior parameters (three chamber sociability test, Morris Water Maze, elevated plus maze, open field and rota rod test), biochemical parameters such as oxidative stress (GSH, SOD, Catalase, MDA), inflammatory cytokines (Il-1ß, IL-6, IL-10, TNF-α), histopathological examination (cresyl violet staining) of hippocampus (HC) and prefrontal cortex (PFC) regions. Further, the mRNA as well as protein expression of AMPA receptor was evaluated using RT-PCR and western blot respectively to study the mechanism of neuroprotective effect of BM. The in-silico analysis followed evaluating the binding profile of different constituents of BacoMind with AMPA receptor. RESULTS: The results of the in-vivo study indicated BM at 80 mg/kg ameliorated abnormal behavioral paradigms such as social deficits, repetitive behavior, learning and memory impairments, and motor coordination exhibited by the VPA model of ASD in rats. Furthermore, BM was found to have a significant anti-oxidant (increasing GSH, SOD, and catalase and decreasing MDA levels) and anti-inflammatory properties (decreasing IL-1ß, 6, TNF- α). The histopathological score was also found to be significantly improved by BM in a dose dependent manner in both HC and PFC. In addition to this, the up-regulated mRNA as well as protein expression of AMPA receptor was significantly reduced by 80 mg/kg dose of BM in both HC and PFC. Further, the in-silico analysis of different constituents of BacoMind with AMPA receptor demonstrated that luteolin and apigenin showed good binding to both the competitive antagonist binding site, non-competitive antagonist binding site and allosteric modulator site while Bacosaponin C showed good binding to the non-competitive antagonist binding site. CONCLUSION: The present study concluded that BM can be a potential candidate for ameliorating the ASD symptoms in rats and acts via modulating the up-regulated AMPA receptor expression.


Assuntos
Transtorno do Espectro Autista , Bacopa , Fármacos Neuroprotetores , Efeitos Tardios da Exposição Pré-Natal , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Bacopa/química , Catalase , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Gravidez , RNA Mensageiro , Ratos , Ratos Wistar , Receptores de AMPA , Solução Salina , Superóxido Dismutase , Ácido Valproico/farmacologia
12.
Bol. latinoam. Caribe plantas med. aromát ; 21(2): 131-155, mar. 2022. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1393364

RESUMO

Bacopa monnieri(L.) Wettst. (Plantaginaceae), also known as Brahmi, has been used to improve cognitive processes and intellectual functions that are related to the preservation of memory. The objective of this research is to review the ethnobotanical applications, phytochemical composition, toxicity and activity of B. monnieri in the central nervous system. It reviewed articles on B. monnieri using Google Scholar, SciELO, Science Direct, Lilacs, Medline, and PubMed. Saponins are the main compounds in extracts of B. monnieri. Pharmacological studies showed that B. monnieri improves learning and memory and presents biological effects against Alzheimer's disease, Parkinson's disease, epilepsy, and schizophrenia. No preclinical acute toxicity was reported. However, gastrointestinal side effects were reported in some healthy elderly individuals. Most studies with B. monnieri have been preclinical evaluations of cellular mechanisms in the central nervous system and further translational clinical research needs to be performed to evaluate the safety and efficacy of the plant.


Bacopa monnieri (L.) Wettst. (Plantaginaceae), también conocida como Brahmi, se ha utilizado para mejorar los procesos cognitivos y las funciones intelectuales que están relacionadas con la preservación de la memoria. El objetivo de esta investigación es revisar las aplicaciones etnobotánicas, composición fitoquímica, toxicidad y actividad de B. monnieri en el sistema nervioso central. Se revisaron artículos sobre B. monnieri utilizando Google Scholar, SciELO, Science Direct, Lilacs, Medline y PubMed. Las saponinas son los principales compuestos de los extractos de B. monnieri. Los estudios farmacológicos mostraron que B. monnieri mejora el aprendizaje y la memoria y presenta efectos biológicos contra la enfermedad de Alzheimer, la enfermedad de Parkinson, la epilepsia y la esquizofrenia. No se informó toxicidad aguda preclínica. Sin embargo, se informaron efectos secundarios gastrointestinales en algunos ancianos sanos. La mayoría de los estudios con B. monnieri han sido evaluaciones preclínicas de los mecanismos celulares en el sistema nervioso central y es necesario realizar más investigaciones clínicas traslacionales para evaluar la seguridad y eficacia de la planta.


Assuntos
Humanos , Extratos Vegetais/administração & dosagem , Doenças do Sistema Nervoso Central/tratamento farmacológico , Bacopa/química , Doença de Parkinson/tratamento farmacológico , Saponinas/análise , Esquizofrenia/tratamento farmacológico , Triterpenos/análise , Extratos Vegetais/química , Sistema Nervoso Central/efeitos dos fármacos , Cognição/efeitos dos fármacos , Epilepsia/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Compostos Fitoquímicos
13.
Appl Microbiol Biotechnol ; 106(5-6): 1837-1854, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35218388

RESUMO

Bacopa monnieri (L.) Wettst. or water hyssop commonly known as "Brahmi" is a small, creeping, succulent herb from the Plantaginaceae family. It is popularly employed in Ayurvedic medicine as a nerve tonic to improve memory and cognition. Of late, this plant has been reported extensively for its pharmacologically active phyto-constituents. The main phytochemicals are brahmine, alkaloids, herpestine, and saponins. The saponins include bacoside A, bacoside B, and betulic acid. Investigation into the pharmacological effect of this plant has thrived lately, encouraging its neuroprotective and memory supporting capacity among others. Besides, it possesses many other therapeutic activities like antimicrobial, antioxidant, anti-inflammatory, gastroprotective properties, etc. Because of its multipurpose therapeutic potential, it is overexploited owing to the prioritization of natural remedies over conventional ones, which compels us to conserve them. B. monnieri is confronting the danger of extinction from its natural habitat as it is a major cultivated medico-botanical and seed propagation is restricted due to less seed availability and viability. The ever-increasing demand for the plant can be dealt with mass propagation through plant tissue culture strategy. Micropropagation utilizing axillary meristems as well as de novo organogenesis have been widely investigated in this plant which has also been explored for its conservation and production of different types of secondary metabolites. Diverse in vitro methods such as organogenesis, cell suspension, and callus cultures have been accounted for with the aim of production and/or enhancement of bacosides. Direct shoot-organogenesis was initiated in excised leaf and internodal explants without any exogenous plant growth regulator(s) (PGRs), and the induction rate was improved when exogenous cytokinins and other supplements were used. Moreover, biotechnological toolkits like Agrobacterium-mediated transformation and the use of mutagens have been reported. Besides, the molecular marker-based studies demonstrated the clonal fidelity among the natural and in vitro generated plantlets also elucidating the inherent diversity among the natural populations. Agrobacterium-mediated transformation system was mostly employed to optimize bacoside biosynthesis and heterologous expression of other genes. The present review aims at depicting the recent research outcomes of in vitro studies performed on B. monnieri which include root and shoot organogenesis, callus induction, somatic embryogenesis, production of secondary metabolites by in vitro propagation, acclimatization of the in vitro raised plantlets, genetic transformation, and molecular marker-based studies of clonal fidelity. KEY POINTS: • Critical and up to date records on in vitro propagation of Bacopa monnieri • In vitro propagation and elicitation of secondary metabolites from B. monnieri • Molecular markers and transgenic studies in B. monnieri.


Assuntos
Bacopa , Saponinas , Triterpenos , Agrobacterium/genética , Bacopa/química , Bacopa/metabolismo , Biotecnologia , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Saponinas/metabolismo , Triterpenos/metabolismo
14.
Appl Microbiol Biotechnol ; 106(5-6): 1799-1811, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35201388

RESUMO

Bacopa monnieri (L.) Wettst. (BM), also known as 'Brahmi' or 'Water Hyssop', has been utilized as a brain tonic, memory enhancer, sensory organ revitalizer, cardiotonic, anti-anxiety, antidepressant and anticonvulsant agent in the Indian system of medicine Ayurveda for centuries. BM is beneficial in the treatment of Parkinson's disease, Alzheimer's disease, epileptic seizures and schizophrenia in recent pharmacological research. Dammarane-type triterpenoid saponins containing jujubogenin and pseudojujubogenin as aglycones, also known as bacosides, are the principal chemical ingredients identified and described from BM. Bacosides have been shown to have anti-ageing, anticancer, anticonvulsant, antidepressant, anti-emetic, anti-inflammatory and antibacterial properties in a variety of pre-clinical and clinical studies. The pharmaceutical industry's raw material comes from wild sources; nevertheless, the concentration of bacosides varies in different regions of the plants, as well as seasonal and genotypic variation. Cell and tissue cultures are appealing alternatives for the long-term manufacture of bioactive chemicals, and attempts to produce bacosides using in vitro cultures have been made. This review discusses the biotechnological approaches used to produce bacosides, as well as the limitations and future potential. KEY POINTS: • Bacosides extracted from Bacopa monnieri are important pharmaceutical compounds. • The current review provides insight into biotechnological interventions for the production of bacosides using in vitro cultures. • Highlights the prospects improvement of bacoside production through metabolic engineering.


Assuntos
Bacopa , Saponinas , Triterpenos , Bacopa/química , Bacopa/metabolismo , Ayurveda , Técnicas de Cultura de Órgãos , Extratos Vegetais/metabolismo , Saponinas/química , Triterpenos/química
15.
J Ethnopharmacol ; 288: 114997, 2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35033624

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bacopa floribunda (BF), a locally available plant has been employed traditionally as memory enhancer in Southwestern, Nigeria. It has been utilized in traditional and Ayurvedic medicine as brain tonic for enhancing memory, anti-aging and forestalling series of psychological disorders. However, there is a dearth of scientific information on the mechanism(s) of action of important phytochemicals from BF extract on dementia. AIM OF THE STUDY: Alzheimer's disease, the commonest form of dementia has been postulated to triple by 2050 as a result of increase in life expectancy. This study therefore assessed and compared the possible mechanism(s) of action of flavonoids and saponins from BF on Amyloid beta (Aß1-42)-induced dementia in male BALB/c mice. MATERIALS AND METHODS: Eighty (80) healthy BALB/c mice divided into 10 groups (n = 8) were given a single bilateral ICV injection of Aß1-42 or normal saline. Graded doses of Saponins and flavonoids (50, 100 and 200 mg/kg) were used as treatment for 21 days. Hippocampal homogenates were assayed for the levels of antioxidants, oxidative stress and neuroinflammatory markers. In vitro antioxidant activity of flavonoids and saponins were equally assessed using standard procedures. The extent of microglial activation was quantified through immunohistochemistry procedure. RESULTS: Aß1-42 successfully caused a spike in hippocampal levels of MDA, IL1ß, TNF-α including MPO levels and invariably decreased antioxidant activities. Likewise an increase in reactive microglia (microgliosis) was observed. However, crude saponins and flavonoids from BF were able to suppress microgliosis, oxidative stress and neuroinflammation induced by Aß1- 42 and were observed to be more effective at higher doses of saponins (100 mg/kg and 200 mg/kg) and flavonoid (100 mg/kg). CONCLUSIONS: Phytochemicals from BF efficiently exhibited dose dependent alleviation of some symptoms associated with Alzheimer's disease.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Bacopa/química , Extratos Vegetais/farmacologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/administração & dosagem , Antioxidantes/isolamento & purificação , Relação Dose-Resposta a Droga , Feminino , Flavonoides/administração & dosagem , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Saponinas/administração & dosagem , Saponinas/isolamento & purificação , Saponinas/farmacologia
16.
Molecules ; 26(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063409

RESUMO

Brahmi essence, developed from Bacopa monnieri (L.) Wettst. standardized extract and mulberry juice, was proven to improve the memory speed of healthy participants aged 55-80 years old, following a 12-week dietary program. However, the metabolites have not yet been reported. Our objective was to characterize the altered metabolites in the plasma, urine, and feces of healthy volunteers after consumption of Brahmi essence for 12 weeks, using the LC-MS metabolomics approach. The altered metabolites were selected from OPLS-DA S-plots; 15 metabolites in the plasma, 7 in the urine, and 17 in the feces samples were tentatively identified by comparison with an online database and literature. The metabolites in the plasma samples were in the classes of amino acids, acylcarnitine, and phospholipids. Benzeneactamide-4-O-sulphate and 3-hydroxyhippuric acid were found in urine samples. The metabolites in the class of amino acids, together with jujubogenin and pseudojujubogenin, were identified in the fecal samples. The aminoacyl-tRNA, aromatic amino acids, and branched-chain amino acid biosynthetic pathways were mainly related to the identified metabolites in all three samples. It could be implied that those metabolites and their pathways might be linked with the effect of Brahmi essence on memory speed.


Assuntos
Bacopa/química , Fezes/química , Metabolômica/métodos , Morus/química , Extratos Vegetais/administração & dosagem , Plasma/química , Urina/química , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida , Método Duplo-Cego , Feminino , Sucos de Frutas e Vegetais , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/farmacocinética
17.
Mol Biol Rep ; 48(3): 2653-2668, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33675463

RESUMO

Brahmi or aindri is a popular herb in the vast and rich compendium of herbs of Ayurveda and is botanically identified as Bacopa monnieri Linn. (BM). It is extensively used in Ayurveda and other traditional systems of medicine in the management of neurological psychiatric disorders. BM possess active principles belonging to alkaloids, glycosides, flavonoids, saponins categories. Numerous research have been undertaken across the globe to evaluate the neuroprotective potential of this herb. This review collates and summarises current (as on May 2020) published literature on Brahmi as a neuroprotective in neurological and psychiatric disorders. English language articles from databases PubMed, Scopus and Google scholar were searched using appropriate free keywords and MeSH terms related to the topic. The review demonstrates the neuroprotective potential of the Ayurveda herb Brahmi in several disorders including Alzheimer's disease, epilepsy, Parkinson's disease, Huntington's disease, cerebral ischemia and infarct and neoplasms.


Assuntos
Bacopa/química , Neuroproteção , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Humanos , Doenças do Sistema Nervoso/tratamento farmacológico , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
18.
Molecules ; 26(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668176

RESUMO

Colorectal cancer is a common cancer worldwide and reduced expression of the DNA repair endonuclease XPF (xeroderma pigmentosum complementation group F) is associated with colorectal cancer. Bacopa monnieri extracts were previously found to exhibit chemical-genetic synthetic lethal effects in a Saccharomyces cerevisiae model of colorectal cancer lacking Rad1p, a structural and functional homologue of human XPF. However, the mechanisms for B. monnieri extracts to limit proliferation and promote an apoptosis-like event in RAD1 deleted yeast was not elucidated. Our current analysis has revealed that B. monnieri extracts have the capacity to promote mutations in rad1∆ cells. In addition, the effects of B. monnieri extracts on rad1∆ yeast is linked to disruption of the vacuole, similar to the mammalian lysosome. The absence of RAD1 in yeast sensitizes cells to the effects of vacuole disruption and the release of proteases. The combined effect of increased DNA mutations and release of vacuolar contents appears to induce an apoptosis-like event that is dependent on the meta-caspase Yca1p. The toxicity of B. monnieri extracts is linked to sterol content, suggesting saponins may be involved in limiting the proliferation of yeast cells. Analysis of major constituents from B. monnieri identified a chemical-genetic interaction between bacopasaponin C and rad1∆ yeast. Bacopasaponin C may have potential as a drug candidate or serve as a model for the development of analogs for the treatment of colorectal cancer.


Assuntos
Bacopa/química , Enzimas Reparadoras do DNA/metabolismo , Endonucleases/metabolismo , Glicosídeos/farmacologia , Extratos Vegetais/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Triterpenos/farmacologia , Vacúolos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/genética , Endonucleases/deficiência , Endonucleases/genética , Glicosídeos/química , Extratos Vegetais/química , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Triterpenos/química , Vacúolos/metabolismo
19.
Sci Rep ; 11(1): 596, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436817

RESUMO

Bacopa monnieri (Linn.) Wettst. has been used in traditional medicine as a drug to enhance and improve memory. In this regard, this study aims to provide B. monnieri's efficacy as a neuroprotective drug and as a nootropic against various neurological diseases. Literatures were collected, following Prisma guidelines, from databases, including Scopus, PubMed, Google Scholar, and Science Direct and were scrutinized using a quality scoring system. Means, standard deviations and 'n' numbers were extracted from the metrics and analyzed. Jamovi computer software for Mac was used to carry out the meta-analysis. The selected studies suggested that the plant extracts were able to show some improvements in healthy subjects which were determined in Auditory Verbal Learning Task, digit span-reverse test, inspection time task and working memory, even though it was not significant, as no two studies found statistically significant changes in the same two tests. B. monnieri was able to express modest improvements in subjects with memory loss, wherein only a few of the neuropsychological tests showed statistical significance. B. monnieri in a cocktail with other plant extracts were able to significantly reduce the effects of Alzheimer's disease, and depression which cannot be solely credited as the effect of B. monnieri. Although in one study B. monnieri was able to potentiate the beneficial effects of citalopram; on the whole, currently, there are only limited studies to establish the memory-enhancing and neuroprotective effects of B. monnieri. More studies have to be done in the future by comparing the effect with standard drugs, in order to establish these effects clinically in the plant and corroborate the preclinical data.


Assuntos
Antidepressivos/farmacologia , Bacopa/química , Disfunção Cognitiva/prevenção & controle , Depressão/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Extratos Vegetais/farmacologia , Humanos , Metanálise como Assunto
20.
Nutr Cancer ; 73(11-12): 2166-2176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33148034

RESUMO

The intermingled interrelationship of Bacopa monnieri and human health dates backs to the ancient times in the history of ayurveda making the plant an enriched source of alternative drug development in a nontoxic manner. In recent years, research on the biological effects of Bacopa monnieri has flourished as promising neuroprotective, memory boosting and more importantly as both chemopreventive and anti-neoplastic agent. Each naturally synthesized chemical constituent identified from Bacopa monnieri leaf extract with different solvents, has significant anti-metastatic, anti-angiogenic and anti-proliferative activity on different type of cancer cells. In this context, a substantial literature survey allows a deep understanding of the involvement of specific bioactive molecules along with the whole plant extract of Bacopa monnieri with their divergent effective molecular pathways. This comprehensive review covers literature up to the year 2020 highlighting all the anticancer efficacy along with signaling pathways activated by secondary metabolites found in bacopa plant.


Assuntos
Bacopa , Bacopa/química , Bacopa/metabolismo , Humanos , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...